ALGUNS ESTADOS FÍSICOS DE ANCELMO L. GRACELI


DE INTERAÇÕES [ENTRE ENERGIAS, CAMPOS, E OUTROS]

DE TRANSFORMAÇÕES - SE ENCONTRA EM TRANSFORMAÇÕES.

DE TRANSCENDÊNCIAS - QUE SE TRANSCENDEM DE UMA CONDIÇÃO FÍSICA E ESTRUTURAL PARA OUTRA.

TÉRMICO - A CONDIÇÃO TÉRMICA É FUNDAMENTAL PARA OUTROS ESTADOS FÍSICOS.

ELETROMAGNÉTICO.- A CONDIÇÃO ELETROMAGNÉTICA INFLUENCIA EM OUTROS ESTADOS FÍSICOS.

DE MOMENTUM.- A CONDIÇÃO DINÂMICA TAMBÉM E UM ESTADI QUE TEM AÇÃO SOBRE OS OUTROS.

DE POTENCIAL DE ENTROPIA - DE ENTRAR EM ENTROPIA.

DE POTENCIAL DIVERSO.. OUTROS TIPOS DE POTENCIAL  ALÉM DE ENTROPIA.








ENTROPIA DE ANCELMO GRACELI  EM PROCESSOS QUÂNTICOS MULTIDIMENSIONAIS.


MECÂNICA GRACELI GENERALIZADA multidimensional - relativista indeterminada


dentro da sua mecânica e com  o operador de GRACELI   ¨*  ¨se tem a indeterminalidade quântica generalizada de Graceli


  MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.


DE  ANCELMO LUIZ GRACELI  [BRASILEIRO].



FÍSICA GRACELI DIMENSIONAL. [dimensionismo indeterminado Graceli].




  MECÃNICA GRACELI GERAL - QTDRC.




equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS FÍSICOS, TIPOS E CARACTERITÍCAS, E POTENCIAIS FÍSICOS DAS ESTRUTURAS, DOS ELEMENTOS QUÍMICOS, ENERGIAS E NÍVEIS DE ENERGIAS, POTENCIAIS DE INTERAÇÕES , CONDUÇÕES, EMISSÕES, DESINTEGRAÇÕES, ABSORÇÕES, E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS DE FASES E INTERMEDIÁRIOS DE TEMPERATURA, ELETROMAGNETISMO,  ENTROPIA, VIBRAÇÕES. E OUTROS.

LEVANDO E UM  SISTEMA DE FASES ÍNFIMAS, TEMOS UM SISTEMA DIMENSIONAL INDETERMINADO.

   *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.

CONFORME  A TEORIA DE GRACELI DO AFASTAMENTO DOS PLANETAS E SATÉLITES, A TERRA DO AMANHÂ SERÁ O MARTE DE  HOJE, E QUE  FOI O VÊNUS DE HOJE, O MESMO SERVE PARA MARTE DE ONTEM. ISTO EXPLICA PORQUE SE TEM MARCAS DE RIOS EM MARTE.


ψ     [   ]    .


*  .

ψ   .


                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,


  = temperatura.









ψ     [ / ]   /[]


  ) [,] / [    ]     .




ψ     [ / ]   /[]


  ) [,] / [    ]     .







ψ        / [ [ 

]

 

 

]  ] ]    .




   / ]]   ) [[ ][

.

 

 

ψ] ]  .



 ψ   / [ [ ] [


 ] 
ψ] /    .





ψ    ) [[ 


ψ] .   . 

 

 

 

 






ψ      [

 

 

 

 

]] [ ][,] ]   .,



 ψ        [ [ ] 

 
ψ]]   .




ψ       / [ 

[ ] [ ]

 

 

]] ]    .






ψ   / [ [ ]]

ψ] /     .



*  [ ]] 

ψ[
 ,  / ] ]] .








    [[ ]]/

] [
 , ]ψ]] .





ψ [[ ]]

 ] , ,]ψ]/ ]  .










  / [ [ ]]

 , ]ψ ]  .




ψ      [  [ ] [ , ]

  ψ ] / ]    .






ψ     [ , ]

] /      [[ ]]     .






ψ  [[[ ]]  ) [

ψ [ , ]










ψ     [ [[ ]]

  ) [ , ]] /  ψ     .



   [[ ]] /   ) / [ , ,].

, ] / ψ   .

magnetão de Bohr, referido em alguns textos como magneton de Bohr, (símbolo ) é uma constante física relacionada com o momento magnético que recebe seu nome do físico Niels Bohr. Pode ser expresso em térmos de outras constantes elementares como:

onde:

 é a carga elementar,
 é a constante de Planck reduzida,
 é a massa em repouso do elétron

No sistema internacional de unidades se valor é aproximadamente:

 = 9,274 008 99(37)·10-24 J·T-1

No sistema CGS de unidades seu valor é aproximadamente:

 = 9,274 008 99(37)·10-21 erg·G-1





  •  é a massa da partícula.
  •  é a carga da partícula.
  •  é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
  •  é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são: 
  •  é o vetor de três componentes do potencial magnético.
  •  é o potencial escalar elétrico.

[ ]



radioatividade (AO 1945: radioactividade), também chamada de radiatividade (AO 1945: radiactividade) é um fenômeno que pode ser natural ou artificial, pelo qual algumas substâncias ou elementos químicos, chamados radioativos, são capazes de emitir radiações,[1] as quais têm a propriedade de impressionar placas fotográficas, ionizar gases, produzir fluorescência e atravessar corpos opacos à luz. As radiações emitidas pelas substâncias radioativas são principalmente partículas alfapartículas beta e raios gama.

A radioatividade é uma forma de energia nuclear, usada na medicina (radioterapia), e consiste no fato de alguns átomos como os do urâniorádio e tório serem “instáveis”, perdendo constantemente partículas alfa, beta e gama (raios-X). O urânio, por exemplo, tem 92 prótons, porém através dos séculos vai perdendo-os na forma de radiações, até terminar em chumbo, com 82 prótons estáveis. Foi observada pela primeira vez pelo francês Henri Becquerel em 1896 enquanto trabalhava em materiais fosforescentes.[2]

A radioatividade pode ser:

  • Radioatividade natural ou espontânea: É a que se manifesta nos elementos radioativos e nos isótopos que se encontram na natureza e poluem o meio ambiente.
  • Radioatividade artificial ou induzida: É aquela que é provocada por transformações nucleares artificiais.

Visão geral

[

O fenômeno da desintegração espontânea do núcleo de um átomo com a emissão de algumas radiações é chamado de radioatividade. A radioatividade transforma núcleos instáveis fazendo surgir as radiações α, β e γ.

A lei fundamental do decaimento radioativo afirma que a taxa de decaimento é proporcional ao número de núcleos que ainda não decaíram:

Esta é a equação da lei básica para a radioatividade.

A medida da intensidade da radioatividade é feita em duas unidades que são:

  • Curie: Definido como a quantidade de material radioativo que

dá  desintegrações por segundo.

  • Rutherford (Rd): é definido como a quantidade de substância radioativa que dá  desintegrações por segundo.

Na natureza existem elementos radioativos que exibem transformação sucessiva, isto é, um elemento decai em substância radioativa que também é radioativa. Na transformação radioativa sucessiva, se o número de nuclídeos qualquer membro da cadeia é constante e não muda com o tempo, é chamado em equilíbrio radioativo.[3] A condição de equilíbrio é portanto:

ou

.

Onde os subscritos P, D e G indicam núcleo-pai (do Inglês parent), núcleo-filha (do Inglês daughter) e núcleo-neta (do Inglês granddaughter) respectivamente.

O estudo da radioatividade e radioisótopos tem várias aplicações na ciência e tecnologia. Algumas delas são:

  1. Determinação da idade de materiais antigos com auxílio de elementos radioativos.
  2. Análises para obtenção de vestígios de elementos.
  3. Aplicações médicas como diagnóstico e tratamento.

Radioatividade artificial


Wilhelm Röntgen em seu laboratório

Produz-se a radioatividade induzida quando se bombardeiam certos núcleos com partículas apropriadas. Se a energia destas partículas tem um valor adequado, elas penetram no núcleo bombardeado formando um novo núcleo que, no caso de ser instável, se desintegra posteriormente. Foi realizada pela primeira vez pelo físico neozelandês Ernest Rutherford, ao bombardear átomos de nitrogênio, com partículas alfas, obtendo oxigênio. Sendo estudada pelo casal “Joliot-Curie” (Frédéric Joliot e Irène Joliot-Curie), bombardeando núcleos de boro e alumínio com partículas alfa, eles observaram que as substâncias bombardeadas emitiam radiações após retirar o corpo radioativo emissor das partículas alfa. O estudo da radioatividade permitiu um maior conhecimento da estrutura dos núcleos atômicos e das partículas subatômicas. Abriu-se a possibilidade da transmutação dos elementos, ou seja, a transformação de elementos em elementos diferentes. Inclusive o sonho dos alquimistas de transformar outros elementos em ouro se tornou realidade, mesmo que o processo economicamente não seja rentável.[4]

Em 1896, Henri Becquerel (1852-1908) estudava, na École Polytechnique, a possibilidade de que o sol poderia provocar a emissão de raios X pelos cristais. O método por ele utilizado era de que o colocava-se cristais perto de placas fotográficas envoltas em um papel escuro, tendo uma tela composta de fios de cobre entre os dois.[5]

Os raios de sol causando a emissão dos raios X nos cristais, os mesmos deveriam penetrar no papel escuro, mas não penetrando nos fios de cobre da tela e assim o cientista poderia ver a fotografia da tela na placa. Em seguida Becquerel colocou a tela em uma gaveta e deixou o cristal sem nenhuma proteção sobre uma mesa. Retornou, dias depois, e viu que nela havia uma impressão da tela de cobre. Sua conclusão foi a de que a radiação emitida pelo cristal (no caso de urânio) não havia sido provocada pelo Sol, e sim por alguma propriedade do mesmo cristal. Mais tarde Becquerel repetiu a experiência colocando o cristal e a placa fotográfica dentro de uma caixa blindada e obteve o mesmo resultado.

Em 1898, Marie (1867-1934) e Pierre Curie (1859-1906) descobriram elementos que produzem os raios catódicos, por exemplo, o rádio. Observando que a radiação deste elemento era maior que a do urânio. Logo a seguir batizou este fenômeno de radioatividade.

Logo após, Ernest Rutherford achou dois tipos de raios, os quais ele batizou de alfa e beta. O raio beta tendo uma característica de alto poder de penetração e o raio alfa, ao contrário, pequeno poder de penetração. Os raios beta são elétrons e os raios alfa são núcleos de hélio. Logo em seguida descobriu-se que os raios beta, ao serem defletidos em campos elétricos, mostravam ter carga negativa e tinham uma velocidade muito maior do que a dos raios catódicos - os raios beta são elétrons que vêm de dentro do núcleo e com muito mais energia. Rutherford, por outro lado, mostrou que a relação carga-massa do raio alfa era parecida com a do hidrogênio e que sua carga era duas vezes maior do que a do hidrogênio. Descobriu, portanto, o primeiro núcleo mais pesado que o hidrogênio - o hélio.[5]

Quantização da radioatividade

O decaimento radioativo é um processo que envolve conceitos de probabilidade. Partículas dentro de um átomo têm certas probabilidades de decair por unidade de tempo de uma maneira espontânea. A probabilidade de decaimento é independente da vida previa da partícula. Por exemplo se N(t) é considerado o número de partículas como função do tempo, então, temos a taxa de decaimento sendo proporcional a N.[5]

Formulando matematicamente temos:

A constante de proporcionalidade tem dimensão inversamente proporcional ao tempo.

onde  é o número inicial de partículas. O número de partículas de um dado elemento decai exponencialmente numa taxa diretamente proporcional ao elemento. Define-se a vida média de um elemento como

Tendo um exemplo de muitas partículas, 1/e delas (cerca de 37,8%) não decairão após um tempo . Na Física Nuclear trabalha-se com o conceito de vida média, que é o tempo depois do qual a amostra se reduziu à metade.[5]

Relacionando essas duas quantidades, assim temos:





Uma analogia comumente utilizada para explicar o fenômeno do tunelamento quântico consiste em se imaginar uma colina e um trenó subindo em direção ao seu cume. À medida que o trenó vai subindo a colina, parte de sua energia cinética transforma-se em energia potencial gravitacional U. Quando o cume da colina é atingido, o trenó tem energia potencial Ub. Se a energia mecânica inicial E do trenó for maior que Ub, o trenó poderá chegar até o outro lado da colina. Contudo, se E for menor que Ub, a física clássica garante que não existe a possibilidade de o trenó ser encontrado do outro lado da colina. Na mecânica quântica, porém, existe uma probabilidade finita de que esse trenó apareça do outro lado, movendo-se para a direita com energia E, como se nada tivesse acontecido. Dizemos que a colina se comporta como uma barreira de energia potencial, exemplificando de maneira simplista o efeito Túnel.[9]

Considerando um elétron e a densidade de probabilidade  da onda de matéria associada a ele, pode-se considerar três regiões: antes da barreira potencial (região I), a região de largura L da barreira (região II) e uma região posterior à barreira (região III). A abordagem da mecânica quântica é baseada na equação de Schrödinger, a qual tem solução para todas as três regiões. Nas regiões I e III, a solução é uma equação senoidal, enquanto na segunda a solução é uma função exponencial. Nenhuma das probabilidades é zero, embora na região III a probabilidade seja bem baixa.[5]

O coeficiente de transmissão (T) de uma determinada barreira é definido como uma fração dos elétrons que conseguem atravessá-la. Assim, por exemplo, se T= 0,020, isso significa que para cada 1000 elétrons que colidem com a barreira, 20 elétrons (em média) a atravessam e 980 são refletidos.

 , 

Por causa da forma exponencial da equação acima, o valor de T é muito sensível às três variáveis de que depende: a massa m da partícula, a largura L da barreira e a diferença de energia (Ub – E) entre a energia máxima da barreira e a energia da partícula. Constatamos também pelas equações que T nunca pode ser zero

Comentários

Postagens mais visitadas deste blog